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Abstract

Extreme-ultraviolet (EUV) images of the Sun are becoming an integral part of space weather prediction tasks.
However, having different surveys requires the development of instrument-specific prediction algorithms. As an
alternative, it is possible to combine multiple surveys to create a homogeneous data set. In this study, we utilize the
temporal overlap of Solar and Heliospheric Observatory Extreme ultraviolet Imaging Telescope and Solar
Dynamics Observatory Atmospheric Imaging Assembly 171Å surveys to train an ensemble of deep-learning
models for creating a single homogeneous survey of EUV images for two solar cycles. Prior applications of deep
learning have focused on validating the homogeneity of the output while overlooking the systematic estimation of
uncertainty. We use an approach called “approximate Bayesian ensembling” to generate an ensemble of models
whose uncertainty mimics that of a fully Bayesian neural network at a fraction of the cost. We find that ensemble
uncertainty goes down as the training set size increases. Additionally, we show that the model ensemble adds
immense value to the prediction by showing higher uncertainty in test data that are not well represented in the
training data.

Unified Astronomy Thesaurus concepts: Solar corona (1483); Convolutional neural networks (1938); Calibration
(2179); Solar atmosphere (1477); Solar extreme ultraviolet emission (1493)

1. Introduction

Solar observations span across several past decades being
recorded by multiple ground-based and space-based observa-
tories. Due to changes in instrumentation, the data sets differ in
resolution (spatial and temporal), field of view, dynamic range,
and noise characteristics. While dealing with long-term solar
data, the detection of solar features/events requires building
custom algorithms for each instrument. Cross-calibrating those
surveys and creating a single homogeneous data set for the
entire span of observation enables the scientific community to
make long-term studies and discover underlying patterns
without spending effort to deal with instrument differences.

There have been several efforts to homogenize solar images
from different surveys using traditional approaches such as
oversampling of pixels using interpolation, intensity rescaling,
etc. Recent studies find a significant improvement over those
baseline approaches in homogenization tasks such as super-
resolving solar magnetograms (Jungbluth et al. 2019) utilizing
state-of-the-art machine-learning (ML) approaches such as
convolutional neural networks (CNNs).

Deep-learning (DL) approaches applied in scientific domains
suffer from the shortcoming of limited availability of data.
Limited data create barriers for ML models to learn the
diversity of natural phenomena. Thus, in such situations
trusting a point estimate by an ML model on unseen data can
result in underestimation and overestimation. Creating model
ensembles can help mitigate this problem by generating
prediction uncertainty. There are different approaches to

creating DL model ensembles that range from multiple
selections of data to random disconnections in neural networks
(Gal & Ghahramani 2015) and approximating Bayesian neural
networks by adding several anchors that drive the regulariza-
tion term in the model loss (Pearce et al. 2018). Studies find the
application of usage model ensembles to be useful in
overcoming the demerits of data scarcity in scientific domains
such as heliophysics (Chatterjee et al. 2022).
In this study, we use CNNs to homogenize and estimate the

uncertainty of full-disk solar extreme-ultraviolet (EUV) images
in 171Å from the Extreme-ultraviolet Imaging Telescope (EIT;
Delaboudinière et al. 1995) on board Solar and Heliospheric
Observatory (SOHO) and the Atmospheric Imaging Assembly
(AIA; Lemen et al. 2012) on board Solar Dynamics Observatory
(SDO) using their overlapping period.

2. Observational Data

We use level-1 SOHO/EIT and SDO/AIA 171Å full-disk
images (Figure 1) with a cadence of 1 day and over the period
2010–2020 for our study. We make sure that the EIT–AIA
pairs are observed at the same time.

3. Data Alignment

3.1. Reprojection

The EIT–Sun–AIA angle, focal length, and detector
differences necessitate reprojecting EIT–AIA images to a
common point of view and field of view. We use the
“reproject” module of Python to map AIA images to EIT
detector with 4 times the original resolution of EIT (Figure 2).
The reprojection of the corona is nontrivial. So, we make an
assumption that coronal structures lie on a sphere centered on
Earth, with a radius of the Sun–Earth distance.
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3.2. Template Matching

Reprojection is insufficient when we want to perform one-to-
one mapping of EIT to AIA patches. Several other factors such
as resolution and optical aberration result in pixel shifts and
may affect our homogenization objective. To make an accurate
alignment, we perform template matching (Brunelli 2009)
using the following steps:

1. Divide the EIT full-disk images into contiguous non-
overlapping 64× 64 patches.

2. Blow up each of those patches by 4 times and map that
location to the reprojected AIA.

3. Correlate that blown-up EIT patch within the corresp-
onding AIA location having a margin of (1/8)th patch
size on all four sides.

4. Find the 256× 256 region from the AIA window
providing the best correlation.

5. Follow the above steps after generating another set of
nonoverlapping patches bounded by the center pixels of
the original patches.

The steps above produce 365 patch pairs [64× 64 EIT,
256× 256 AIA] per full-disk EIT–AIA image pair (Figure 3).

3.3. Data Preparation: Training, Validation, and Test Set

We sample decade-long data (2010 May–2020 December)
within the training, validation, and test set by adding the first 7
months of each year to the training set, August and September
to the validation set, and the rest to the test set. We also put the
entire 2015 data aside in the test set and tune the model
hyperparameters based on the validation set performance.

4. DL-based Image Transformation

4.1. DL Model

We prepare the DL model to transform 64× 64 EIT patches
to 256× 256 AIA patches. The model is based on the

superresolution CNN presented in Deudon et al. (2020).
However, our network is simple as we do not have multiple
views and avoid shift-net by prealigning the EIT and AIA
patches. The model consists of an encoder and a decoder
structure. The encoder consists of 2D convolution layers and
residual blocks. The decoder consists of 4× upsampling and
2D convolution layers. In each residual block, two convolution
layers are used and the convolution layer outcome is added to
the input layer to generate the output. We use a kernel size of
5× 5, 32 feature layers and a parametric ReLU activation in all
the convolution layers except for the final layer that has only
one feature layer and a kernel size of 1× 1. We use reflection
padding the deal bring edge continuity in the adjacent
superresolved tiles.

4.2. Loss Function Definition

To minimize the difference between the target (T) and DL
predicted (P) image, we consider the following as elements of
loss function:

1. Mean squared error (MSE): ( )= å -T PMSE
N i i i
1 2 where

N stands for the number pixels in output patches.
2. Histogram (Wang et al. 2018) difference: =H

( )å -HT HP
K i i i
1 2 where K stands for the number of bins
in the histograms.

3. Negative of structural similarity index metric (Zhou et al.
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σX, and σX,Y respectively represent mean of X, standard
deviation of X, and covariance of X, Y.

4. Gradient difference: ( ) ( )= å  -  + å  - G T P T P .
N i x i x i N i y i y i
1 2 1 2

Our objective is to perform the best-performing weighted
combination of MSE and one of the other losses. To identify
the weights, we combine MSE with each of the remaining
components and calculate the best weight through a set of
diagnostics as described in the following subsection.

Figure 1. Level-1 representative images from SOHO/EIT and SDO/AIA from the same date. Left panel shows an EIT 171 Å image at the native resolution and field
of view. Right panel shows an AIA 171 Å image at native resolution and field of view. A comparison of the images clearly depicts the higher field of view of EIT.
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4.3. Approximate Bayesian Ensembling

Having a small amount of training data it is important that
we estimate the uncertainty in model inference. We use a
state-of-the-art technique called approximately Bayesian
ensembling (ABE) that draws a set of anchor weights from a
prior distribution and factor them through an additional

regularization term to the loss function defined by

ˆ ( ) ( )   q qG= - + -I I
N N

Loss
1 1

. , 1n n n n2
2 1 2

anchor, 2
2

where ( )G = s
s

diag i
i

2

prior,
2
 and N is the number of data points.

Figure 2. Outcome of reprojection. Left panel shows an EIT 171 Å image; right panel shows a reprojected AIA image to match the field of view and point of view
seen by the EIT detector.

Figure 3. Benefit of patch alignment while creating input-target pair for EIT-to-AIA transformation. Top row shows the effect of patch alignment while the bottom
row shows unaligned patches. While comparing the unaligned AIA patches with the aligned ones, the vertical and horizontal shift correction becomes apparent by
looking at the bright region on the top right. Different columns for the AIA patch represent steps toward undersampling for visual comparison with EIT at native
resolution.

3

The Astrophysical Journal Supplement Series, 268:33 (8pp), 2023 September Chatterjee et al.



During the training phase, the weights (θn) are optimized but
the anchors (θanchor,n) are kept unchanged. We randomly select
a set of four anchors and optimize a model for each giving rise

to the ensemble of models. Here the index n runs over the
ensemble members. We set s2

 to be the mean of the AIA patch
histogram. We use anchored regularization in the last layer of

Figure 4. Effect of loss function variations of inferred high-resolution image. The baseline outcome is depicted by the third column while starting from the fourth
column all the outcomes toward the right are from a DL model with loss function shown at the titles. The effect of loss function variation is highly apparent the model
outcome. For example, MSE + 20*Hist does not show as many microdetails as depicted by the MSE + 400*Grad. It can also be seen that the DL outcomes get rid of
the apparent artifact (bright dot on the patch bottom half) on EIT.

Figure 5. Change in metrics defining the quality of inferred images with change in the loss function. The leftmost column shows the outcome of upsampling and
scaling. Columns (2)–(5), starting from left, show the outcomes of the DL model acquired through minimizing a loss printed as the title of each column. The top row
shows a 2D histogram between the target and inferred AIA intensities across all the test patches. The dashed lines represent the median line calculated through each
input inferred intensity bin and the shaded region represents the interquartile range. The green diagonal line represents “y = x.” The middle row depicts the relative
residual for meaning percentage deviation of the median line from “y = x” line. The horizontal dotted lines mark +/−5% relative residual. The bottom row represents
relative variance meaning the percentage uncertainty of outcome with respect to the median. The outcome for MSE loss is overplotted as a baseline on all other loss
function outcomes.
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our model to select both priors and anchors from a Glorot
uniform (Glorot & Bengio 2010) distribution with
s =

+ +
i n nprior,

2 6

l l 1
, where nl and nl+1 are the numbers of units

in two consecutive layers. We rewrite diag(Γ)i as
( )+ +k n n

6
l l1 1 .

We use k1 (with a default value of s » 0.52
 ) to change the

regularization weight and another parameter k2 (with a default
value of 1) to scale the standard deviation of the anchor weight
distribution. We examine the sensitivity of the results to the
anchored regularization with different values of k1 (later
referred to as “LAMBDA”) and k2 (later referred to as “SD”).

5. Results

5.1. Model Prediction, Diagnostics, and Comparison with
Baseline Approach

We develop a set of diagnostics to compare the model
inference between the baseline and outcomes for different loss
function combinations. For this purpose, we collect all the
validation patch pairs and model inference on those. We
generate 2D histograms through logarithmic binning (uniform
bins in log space) from the tuple of pixel intensity from model
inference and target. We calculate the median and standard
deviation for each inferred intensity bin. This generates a curve
representing the expected AIA target and uncertainty for each
inferred value. From those, we estimate the deviation from the
expected rule, i.e., “target = expected.”We name that metric as

“% relative residual.” We also add a metric called “% relative
variance” representing the standard deviation and median ratio.
From the visual inspection and metrics (Figures 4 and 5), we

find that all the DL outcomes give rise to superior results as
compared to those corresponding to simple Upsampling and
scaling. As depicted in Figure 4, the DL outcomes get rid of the
bright point-like artifact present in the EIT patch. Among the
DL outcomes, we use MSE loss as a baseline and examine the
improvement caused by additional terms in the loss function.
We find that unlike MSE additional loss terms drive the “%
relative residual” to be within±5% for an inferred intensity
range of [0, 6] (Figure 5). We also observe that MSE +
400*Grad performs the best for higher intensities (>6). Also,
by visual inspection, one can discern finer details in MSE
+400*Grad more easily as compared to other DL outcomes.
The results show that (although better than the baseline) the

DL model cannot reach the same level of detail as the target
AIA 171Å images (Figure 4). This could be because of the ill-
posed nature of the problem with AIA having higher
diffraction-limited resolution and better pixel pitch than EIT.
It could also be the limited training data that are not able to
constrain the outcome enough or that the small-scale informa-
tion cannot be uniquely recovered from the large scale. More
experiments should be performed to understand the optimal
number of loss function terms beyond which performance
cannot be improved given the size of the training data. Recent
advancement in conditional generative adversarial networks

Figure 6. Change in inference uncertainty with training set size. Each panel represents a 2D histogram between input pixel intensity and standard deviation of
ensemble inference (σensemble) across four superresolved pixels. The top row represents the 2D histograms made from training, validation, and test patches when the
models were trained with 20,000 patch pairs. The bottom row represents the 2D histograms made from training, validation, and test patches when the models were
trained with 70,000 patch pairs. A clear reduction in ensemble SD can be observed especially for higher-intensity pixels when the training set gets bigger.
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also inspires further experiments to bring back surface texture
information but physical validation is needed for them to be fit
for scientific applications.

5.2. Sensitivity of Uncertainty to Training Set Size

We select four anchors and train a model with each of those
without changing the training and validation set. Initially, we
train the model with 20,000 EIT–AIA patch pair and then
increase the number of training patches to 70,000. To record

the change in performance, we generate 2D histograms
between ensemble standard deviation versus input EIT
intensity over all the patch pixels for training, validation, and
test sets. The ensemble standard deviation (σensemble) is
calculated over 64 pixels (4× 4 for 4 models) corresponding
to each EIT pixel. From 2D histograms, we find a clear impact
of training set size on the ensemble uncertainty. We observe
that for each EIT intensity, the distribution of ensemble
uncertainty when trained with 70,000 patches shifts toward

Figure 7. Change in ensemble uncertainty (σensemble) with the intensity of input pixels. Each panel shows uncertainty histograms on training, validation, and test sets
for a particular input intensity and setting of the ensemble run. Each row represents the effect of a particular standard deviation scaling factor (SD) of the regularization
term’s anchor distribution and weightage (LAMBDA). Each column represents the outcome for a particular input intensity (I). The stronger difference in histogram
tails can be observed for the lowest input intensity, i.e., I = 0.64 with validation and test set outcomes being more extended toward higher uncertainty values.
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smaller values as compared to when trained with 20,000
patches (Figure 6).

5.3. Sensitivity of Uncertainty to Ensembling Parameters

We also record changes in the distribution of ensemble
standard deviation (σensemble) for values of input intensity and
parameters defining anchor distribution (k2 or “SD”) and
weightage of the regularization term (k1 or “LAMBDA”) in the
loss function over training, validation, and test set. It appears
that for all the input intensities and anchor parameters, the
σensemble distributions have a longer tail in the validation and
test set as compared to the training set. The difference between
validation/test and training set distribution diminishes for
higher input intensities. However, the distributions get wider
for higher input intensities. We do not find as pronounced an
effect by changing the anchor parameters. However, a close
inspection reveals that the distribution gets wider with a
reduction in regularization weightage for I= 0.64. Also, for

I= 0.76 the second peak in the distribution gets less
pronounced for lower weightage (Figure 7).

5.4. Sensitivity of Uncertainty to Observational Artifacts

On a representative solar image quadrant, we find that
regions that are not well represented in the training data (e.g.,
coronal regions) produce high disagreement among the
ensembles. Also, structures of nonsolar origin generate high
uncertainty (Figure 8).
It is unknown at this moment how many ensemble members

are optimal beyond which the uncertainty in reconstruction
converges. Further investigations are needed for that.

6. Discussion and Conclusion

We thus trained an ensemble of CNNs to superresolve
SOHO/EIT 171Å images to SDO/AIA 171Å images using
the overlapping time period. The salient features of this work
are listed below:

Figure 8. Ensemble inference on a single image quadrant of a representative EUV 171 Å image. The top row starting from left depicts the model input, target,
ensemble inference mean, and ensemble relative standard deviation (σ/μ). The bottom row shows the outcomes of different ensemble members. It can be observed
those bright point-like artifacts (marked by white arrows in the top row and zoomed in the middle row of images) on the input images show high uncertainty and the
across ensemble members. Also, the image for relative ensemble standard deviation depicts high uncertainty for the coronal region in the top left corner.

7

The Astrophysical Journal Supplement Series, 268:33 (8pp), 2023 September Chatterjee et al.



1. We prepared ML-ready data consisting of aligned EIT
171Å 64× 64 patches and AIA 171Å 256× 256 patches
as input and output images.

2. We trained a CNN based on residual blocks and
upsampling layers to translate an EIT patch to an AIA
patch.

3. We found the DL outcome is always superior to a simple
upsampling based on intensity scaling and bicubic
interpolation.

4. We added different terms in the loss function and found
having SSIM or image gradient as additional terms helps
improve the quality of the superresolved images both
visually and quantitatively as compared to MSE baseline.

5. We also estimated the uncertainty of the prediction by
training an ensemble of models through ABE.

6. We found that uncertainty improves while making the
size of the training set larger.

7. We also found that the model ensemble generated high
uncertainty for regions that are not well represented in the
training set such as coronal regions and regions of
nonsolar origin such as artifacts.

We would like to highlight that ABE has been demonstrated
to behave like a Bayesian neural network for toy applications
for which there is ground truth. However, there is no Bayesian
neural network ground truth for homogenization and super-
resolution. Our results are encouraging in that ABE uncertainty
has desirable and verifiable properties such as sensitivity to
input data, robustness to changes in ensembling parameters,
and sensible behavior to unexpected features.

As a future work, we would like to investigate the point of
convergence of ensemble uncertainty. Also, translation
between unpaired image domains (Zhu et al. 2017; Jarolim
2022) can help make use of the large database beyond the
overlapping time period and better constrain high-resolution
textural information. We also plan to use our homogenized
EUV data for scientific investigations in heliophysics toward

independent verification of the data quality (or its scientific
readiness) indicated by the metrics.
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